Multi-scale water cycle predictions using the community WRF-Hydro modeling system

January 28, 2015

D. Gochis, J. McCreight, W. Yu, A. Dugger, K. Sampson, D. Yates, A. Wood, M. Clark, R. Rasmussen

Acknowledgements

NCAR Development, Evaluation and Advising Team:

Wei Yu, David Yates, Kevin Sampson, Aubrey Dugger, James McCreight, Mike Barlage, Yongxin Zhang, Mukul Tewari, Roy Rasmussen, Andy Wood, Fei Chen, Martyn Clark, Matthias Steiner

External Contributors

- K. Mahoney (CU-CIRES)
- Brian Cosgrove (NOAA/OHD)
- B. Fersch, T. Rummler (KIT-Germany)
- Alfonso Senatore (U. Calabria-Italy)
- A. Parodi and E. Fiori (CIMA-Italy)
- Amir Givati and Erik Fredj (Israeli Hydr. Service)
- Lu Li (Bierknes Inst.)
- Col. State Univ. CHILL-team
- Logan Karsten (NOHRSC)
- Sujay Kumar, Christa Peters-Lidard (NASA-Goddard)
- Peirong Lin, Z.-Liang Yang (U. Texas-Austin)
- I. Yucel, (U. Ankara-Turkey)

Support provided by:

- NSF- NCAR-STEP program, EarthCube, ETBC, WSC
- NOAA-OHD
- NASA-IDS
- CUAHSI
- DOE-ESM
- USBR WaterSmart & Dam Safety Programs
- Colorado Water Conservation Board
- Texas Dept. of Environmental Quality & Texas A&M U.

Purpose & Outline

Purpose: Provide a update of multi-scale water cycle modeling capabilities using the community WRF-Hydro system and description of recent prediction applications

Outline:

- 1. Background complete water cycle predictions
- 2. Brief WRF-Hydro System Update
- 3. Applications to flood simulation and prediction
- 4. CONUS-NFIE Implementations for National Streamflow Prediction

Water Cycle Modeling and Prediction within the WRF-Hydro System:

Great Colorado Flood of 11-15 Sept. 2013

Accumulated Precipitation (shaded colors) 100m gridded streamflow (points)

Overarching WRF-Hydro System Objectives

A community-based, supported coupling architecture designed to provide:

- 1. An extensible *multi-scale* & *multi-physics* land-atmosphere modeling capability for conservative, coupled and uncoupled *assimilation* & *prediction* of major water cycle components such as <u>precipitation</u>, soil moisture, snowpack, groundwater, <u>streamflow, inundation</u>
- 2. 'Accurate' and 'reliable' streamflow prediction across scales (from 0-order headwater catchments to continental river basins & minutes to seasons)
- 3. A robust framework for land-atmosphere coupling studies

1-10's km

100's m - 1's km

1-10's m

physics-based runoff processes

Overland Flow -Diffusive wave Kinematic* **Catchment aggregation*** **Groundwater Flow** – **Boussinesq flow Catchment aggregation***

Lateral Flow from

Saturated Soil Layers

Channel Flow – **Diffusive wave Kinematic*** **Reach-based Muskingam***

WRF-Hydro v2.2 Physics Components:

- Optional conceptual 'catchment' modeling support:
 - Benchmarking simple versus complex model structures
 - Enable very rapid 'first-guess' forecasts with reduced runtime/computational demand
 - Bucket discharge gets distributed to channel network channel routing (e.g. RAPID coupling)

WRF-Hydro v2.2 Physics Components:

- Subsurface routing:
 - 2d groundwater model
 - Coupled to bottom of LSM soil column through Darcyflux parameterization
 - Independent hydraulic characteristics vs. soil column
 - Full coupling to gridded channel model through assumed channel depth and channel head
 - Detailed representation of wetlands

Surface ponded water from coupled groundwater in WRF-Hydro B. Fersch, KIT, Germany

Ammer domain 100 m

Hydro-system Dynamics

Improving representation of landscape dynamics essential to flood risks:

- Geomorphological:
 - Bank stability
 - Sediment transport/deposition
 - Debris flows
- Land cover change due fire, urbanization, ag/silvaculture

* Needs improved channel, soils and land cover geospatial data

Data Assimilation with WRF Hydro

Current capabilities

- Ensemble DA:
 - Offline WRF Hydro + DART = "HydroDART"
- Ensemble generation:
 - Initial state & parameter perturbation, ensemble runs

Future capabilities

- Variational DA and/or nudging:
 - Faster & computationally cheaper for largescale applications.
 - Variational DA not rank-deficient
- Other kinds of DA (hybrid, MLEF, ...)
- Bias-aware filtering / Two-stage bias estimation (Friedland, 1969; Dee and de Silva, 1998; De Lannoy et al., 2007)

'WRF-Hydro' Process Permutations and System Features:

- ~180 possible 'physics' component configurations for streamflow prediction:
 - 3 up-to-date column physics land models (Noah, NoahMP, CLM)
 - 3 overland flow schemes (Diffusive Wave, Kinematic Wave, Direct basin aggregation)
 - 4 lateral/baseflow groundwater schemes (Boussinesq shallow-saturated flow, 2d aquifer model, Direct Aggregation Storage-Release: passthrough or exponential model
 - 5 channel flow schemes: Diffusive wave, Kinematic Wave, RAPID-Muskingam for NHDPlus, Custom Network Muskingam/Muskingam Cunge
- Simple level-pool reservoir with management
- DART, filter-based hydrologic data assimilation

Ensemble Flood Forecasting in the Southeast U.S. with WRF-Hydro 2014 WRF User's Workshop, K. Mahoney (NOAA-ESRL)

'WRF-Hydro' Software Features:

- Modularized F90/95 (and later)
- Coupling options are specified at compilation and WRF-Hydro is compiled as a new library in WRF when run in coupled mode
- Physics options are switch-activated though a namelist/configuration file
- Options to output sub-grid state and flux fields to standards-based netcdf point and grid files
- Fully-parallelized to HPC systems (e.g. NCAR supercomputer) and 'good' scaling performance
- Ported to Intel, IBM and MacOS systems and a variety of compilers (pg, gfort, ifort)

Wei Yu (RAL) – lead engineer

WRF-Hydro Setup and Parameterization: Python Pre-Processing Toolkit: K. Sampson - developer

• Python-based scripts

ProcessGeogrid

- ESRI ArcGIS geospatial processing functions
 - Support of multiple terrain datasets
 - NHDPlus, Hydrosheds, EuroDEM

	N ProcessGeogrid	
GIS Servers Add ArcGIS Server Add ArcIMS Server Add WCS Server Add WMS Server Add WMS Server Add WMTS Server	Input Geogrid File D:\ksampson\Desktop\geo_em.d03_upp_Delaware_R.nc Number of pixels to define stream 200 OVROUGHRTFAC Value 1.0 RETDEPRTFAC Value 1	Input Geogrid File Input WRF Geogrid file (NetCDF format).
 ArcGIS on services.nation arcgis on STRUCTURE (*
⊞	OK Cancel Environments << Hide Help	Tool Help
ProcessGeogridFile	in the second se	

Outputs: topography, flowdirection, watersheds, gridded channels, river reaches, lakes, various parameters

Forcing data supported:

- NLDAS, NARR analyses
- QPE products: MPE, StgIV, NCDC-served, dual-pol, Q3/MRMS, gauge analyses
- NOAA QPF products: GFS, NAM, RAP, HRRR, ExREF
- Nowcast (NCAR Trident/TITAN)
 NOHRSC SNODAS
- ESMF/ncl regridding tools

Regridded MPE precipitation during the 2013 Colorado Floods Unidata IDV display

Input Forcing Data Requirements:

- Data Requirements:
 - Forcing Input: Forecast Example...

The National Center for Atm o sp h eric Research

WRF-Hydro output products: Forecasts of water cycle components

Maps of precipitation, soil moisture, ET, snowpack, inundation depth, groundwater depth, streamflow

Unidata IDV display

Visual forecast products...Web map service interfaces: GoogleMaps/Earth, ESRI ArcGIS, OpenLayers

GoogleEarth, GoogleMaps. ArcGIS WMS display

300

500

350

Plotting and Analyzing Data in R: The 'Rwrfhydro' package

Probability of Exceedance

Plotting and Analyzing Data in R: The 'Rwrfhydro' package

Water Budget Analyses

Statistical Evaluation Metrics

Plotting and Analyzing Data in R: The 'Rwrfhydro' package

MODEL 1:	12.200.000	his itelle	and the state						and the	1121
	nse	nselog	cor	rmse	rmsenorm	bias	mae	errcom	errmaxt	errfdc
ts	0.86	0.81	0.95	0.17	6.52	18.7	0.1	NA	NA	0.06
daily	0.87	0.81	0.96	0.16	7.08	19	0.1	-0.07	-0.64	0.06
monthly	0.95	0.87	1	0.08	8.01	18.8	0.06	0	0	NA
yearly	NA	NA	NA	0.07	NA	18.7	0.07	1	2	NA
max10	0.09	0.07	0.57	0.43	25.56	15.3	0.05	NA	NA	NA
min10	-34.59	-7.31	0.51	0.05	181.74	186.9	NA	NA	NA	NA
						and the second				
MODEL 2:					10000					Sec. 19859
	nse	nselog	cor	rmse	rmsenorm	bias	mae	errcom	errmaxt	errfdc
ts	0.68	0.72	0.88	0.26	9.77	22.2	0.13	NA	NA	0.07
daily	0.79	0.71	0.92	0.21	9.03	23.5	0.12	0.2	-0.41	0.08
monthly	0.92	0.85	0.98	0.1	9.7	24	0.08	-0.5	-0.4	NA
yearly	NA	NA	NA	0.08	NA	22.2	0.08	-2	-2	NA
max10	-0.82	0.05	0.39	0.6	36.19	10.1	0.05	NA	NA	NA
min10	-108.28	-8.11	0.24	0.08	318.47	224.9	NA	NA	NA	NA

Water Budget Analyses

Statistical Evaluation Metrics

WRF-Hydro Support Services

- Web Page:
 - Code distribution (GIT repository)
 - Documentation (v2, 120 pages)
 - Test cases (coupled and uncoupled)
 - Script Library (file prep, reformatting, viz)
 - ArcGIS preparation tools
 - Email help support (staff limited)
 - Next Training is May 4-7, 2015 in Boulder (sponsored by CUAHSI)

http://www.ral.ucar.edu/projects/wrf_hydro/

Current WRF-Hydro Applications around the world:

- 1. Operational Streamflow Forecasting:
 - U.S. National Weather Service, National Water Center
 - Israeli Hydrological Service
 - State of Colorado-Upper Rio Grande River Basin (CWCB, NSSL)
 - NCAR-STEP Hydrometeorological Prediction Group
 - U. of Calabria reservoir inflow forecasting
- 2. Streamflow prediction research (U. Ankara, Arizona State U., Karlsruhe Inst. Tech.)
- 3. Diagnosing climate change impacts on water resources
 - Himalayan Mountain Front (Bierknes Inst.)
 - Colorado Headwaters (U. Colorado)
 - Bureau of Reclamation Dam Safety Group (USBR, NOAA/CIRES)
- 4. Diagnosing land-atmosphere coupling behavior in mountain-front regions of the U.S. and Mexico (Arizona State U., U. Arizona)
- 5. Diagnosing the impacts of disturbed landscapes on coupled hydrometeorlogical predictions
 - Western U.S. Fires (USGS)
 - West African Monsoon (Karlsruhe Inst. Tech)
 - S. America Paraná river (U. Arizona)
 - Texas Dust Emissions (Texas A&M U.)
 - Landslide Hazard Modeling (USGS)
- 6. Hydrologic Data Assimilation, WRF-Hydro/DART coupling

Recent Water Prediction Activities

WRF-Hydro Within an Operational Forecasting Workflow:

1. Real-time High-Resolution, Spatially-Distributed Streamflow Prediction: NCAR STEP Program

Project Goals:

- Real-time 24/7 cycling of radar, nowcast and weather model forecasts into hydro model
- Spatial depiction of streamflow conditions at over 220k locations in the Front Range area
 Animated visualization products
 - for qualitative assessment

Real-time Aug. 14, 2014 streamflow anomaly

Science Highlights: Hydro Forecasting

Natio

Status of Re-runs: MRMS Precipitation Forcing... Fourmile Canyon

Science Highlights: Hydro Forecasting

 Status of Re-runs: MRMS Precipitation Forcing... Urban basins show too little runoff production

Streamflow (cfs)

Precipitation Rate (mm/hr)

4. Impacts from the September 2013 Colorado Floods

8 fatalities

Flooding less than 1.0% probability widespread across several counties Communities completely evacuated 18 Counties declared fed. disasters > 450 mi road destroyed Water/wastewater infrastructure destroyed

- Measurement infrastructure destroyed
- > \$2B damages
- No flood watch was issues on 9/11

Gochis et al., 2015 BAMS

Modeling the Sept. 2013 Floods:

WRF-Hydro simulated streamflow using NOAA radar-gauge observed rainfall

Streamflow in cms

Forecasted accumulated rainfall:

Uncoupled NOAA-ESRL HRRR: 15-hr **Initialized:** 9/11 23z (1700 LT)

Coupled WRF/WRF-Hydro model

Initialization: 9/11 00z

Valid: 9/12 07z

NEXRAD QPE

Forecasted streamflow coupled WRF/WRF-Hydro model

Initialization: 9/11 00z

Valid: 9/12 07z

Streamflow in cms

Simulated peakflow values from the WRF-Hydro model

Driven by: NOAA/MPE QPE

Simulated and Estimated Peak Flow versus Contributing Area

WRF_Hydro (MPE) • Esimtated

The Nation 2 -Center for Atm 0 5 D h P Ξ. 0 Rese arc b

Simulated peakflow values from the WRF-Hydro model and the NOAA/OHD RDHM model

> Driven by: NOAA/MPE QPE

Estimated and WRF-Hydro Simulated Peak Flows

Estimated and WRF-Hydro Simulated Peak Flows

Estimated and 1km RDHM Simulated Peak Flows

5. CONUS Domain Continuous Water Prediction

NFIE Default Set-up, Spin-up and Retrospective Analysis:

NHDPlusV2-Encompassing Domain

- 3km NoahMP land model only:
 - No routing (to be done offline by RAPID)
 - No reservoirs
 - USGS land cover type
 - NRCS STATSGO soils
 - Climatological vegetation structure
- In progress: 5 year 2010-2014 continuous run
 - NLDAS2 forcing only with GFS background
- Goal: Quantify background model and forcing bias

- Problems: MRMS, HRRR (and NLDAS2) do not provide complete tributary coverage

HRRR missing LW radiation

- Solutions: Mosaic HRRR onto GFS (0.25 deg)

LW radiation will be added to HRRR output

Computational Performance of WRF-Hydro for CONUS implementations: 6-hour forecast, no routing, full NoahMP output

Computational Benchmark of 3km WRF-Hydro/NoahMP without routing

1-day Forecast on 128 cores With full output takes ~ 10min.

NFIE Preparation Activities:

- 1. Thinning NoahMP model output (IN PROGRESS):
 - Reduce output to key water budget (state and flux) terms
 - Markedly improves runtime (up to 50%) and overall parallelization efficiency
- 2. Parallelizing WRF-Hydro forcing data regridding and re-formatting scripts (DONE)
 - Written in ncl
 - Utilizes ESMF regridders
 - Fully parallelized for fast performance (minimal contribution to total forecast execution time)
 - Processing all grids takes a few minutes depending on # of cores
- 3. Developing alternate 'RESEARCH' model configurations (IN PROGRESS):
 - w/ and w/out terrain routing
 - alternate land model specification (SAC-HTET if ready)
 - alternate land cover type and vegetation structure specification
 - alternate channel routing schemes (single executable w/ RAPID)
 - regional nest(s) with water management (mid-Atlantic/Northeast?)
- 4. Final Benchmarking

NFIE WRF-Hydro/RAPID Workflow

Model Execution:

1. Collect Forcings: MRMS GFS&HRRR (anal. and frxsts)

2. Regridding forcings to WRF-Hydro Grid (ESMF regridders)

> 3. Cycle operational streamflow analyses (HRRR-met, MRMS precipitation)

> 4. Cycle operational streamflow forecasts (HRRR-met, HRRR precipitation)

3a. Create output analysis products

4a. Create output forecast products

NFIE Research Objectives and Opportunities:

Basic Research Questions:

- 1. How do various sources of error in CONUS domain hydrologic simulations scale with river basin size?
- 2. What are the fundamental land-surface controls on flood generation and how do those controls vary regionally? What roles do river management play?
- 3. How does the predictability of flood events scale with river basin size and forecast lead time?
- 4. Are predicted streamflow values sufficient for national domain inundation mapping inputs?
- 5. What is the role of seasonal vegetation dynamics in runoff production?

NFIE Research Objectives and Opportunities:

Prediction Research Questions:

- 1. How accurate are model forcings across the nation and what level of accuracy is need for flood prediction?
- 2. What are the computational requirements of various national domain configured models?
- 3. What are the most efficient/feasible way to implement a probabilistic flood prediction framework over CONUS domains?
- 4. What opportunities exist for improving flood forecasts through incorporation of hydrologic data assimilation?

Continental Domain Water Prediction

- Initial tests...
 - Streamflow from cold start
 - 250m channel pixels, 2nd order and higher filesize 575MB ea.

CONUS+ 250m channel flow (thinned to 5th order and higher channels)

The National Center for Atmospheric Research

CONUS+ 250m channel flow (thinned to 4th order and higher channels)

IDV images

Regional

Views

Benchmarking Stream Flow Measurement Sites

End

WRF-Hydro: http://www.ral.ucar.edu/projects/wrf_hydro/

Contributions:

NCAR Internal: D. Gochis (Project Lead) W. Yu (Lead Software Engineer) D. Yates (Water Resources Lead) K. Sampson (GIS Specialist) J. McCreight (Post-doc) A. Dugger (Post-doc) M. Barlage (NoahMP Developer) A. Wood (Advising Scientist) M. Clark (Advising Scientist) K. Ikeda (Data Analyst) R. Rasmussen (Sr. Advising Scientist) F. Chen (Sr. Advising Scientist)