Applying combined airborne multispectral and Lidar remote sensing to solve water resource problems

Christopher M. U. Neale

Professor, Department of Civil and Environmental Engineering Irrigation Engineering Division Utah State University, Logan, Utah

Introduction and Outline

Brief description of the technologies involved

 Describe an application project in water resources: Mojave River mapping of ET and Groundwater.

This example will show how remotely sensed information can be used in a GIS environment to solve a water resource analysis problem

Remote Sensing Services Laboratory - RSSL

USU Cessna TP206 Remote Sensing Aircraft

Detail of Multispectral Cameras

USU Multispectral Digital System equipment rack with FLIR SC640 thermal infrared camera in the foreground.

UNIVERSI

In 2010, the USU Airborne multispectral system was merged with LASSI Lidar and now fly together on missions

USU Airborne multispectral system integrated with LASSI Lidar

LASSI Lidar Mapping System

– Lidar

- Based on Riegl Q560
- 150,000 measurements/second (300 kHz laser)
- 25 mm range accuracy at any range
- 0.5 m footprint @ 1000 m range
- 60 degree swath angle
- Integrated with cameras

Developed by Dr. Bob Pack, CEE Dept., USU

Helicopter swath through Bonanza Power Plant, Uintah Basin, Utah

Helicopter swath through Utah State University from 200 m using Riegl Q560 lidar system

LASSI Lidar Image of Buildings

Forestry Research

• Full Waveform

Deciduous Forest

Coniferous Forest

LASSI Lidar Image of Tropical Rainforest

RECLANATION Managing Water in the West

Evapotranspiration Analysis of Saltcedar and Other Vegetation in the Mojave River Floodplain, 2007 and 2010

Mojave Water Agency Water Supply Management Study Phase 1 Report

U.S. Department of the Interior Bureau of Reclamation

Mojave River, CA Control of Phreatophytes (Tamarisk – Saltcedar)

Study Overview

Saltcedar (Tamarix)

Analyses included:

- 2007 and 2010 classification of native and non-native vegetation
- Vegetation evapotranspiration modeling
- Lidar elevation map development
- Groundwater mapping
- Water evapotranspiration cost calculations
- Results are presented as a whole and also by Mojave Water Agency Alto, Alto Transition, Centro, and Baja subarea boundaries.
 RECLAMATION

Mojave Water Agency

Lidar/multispectral flight was planned by blocks

Multispectral Ortho Imagery – Block 1 and 2

Ortho-rectification using direct georeferencing with Lidar point cloud data

Multispectral Image Detail Pixel resolution: 0.35 meter

Thermal infrared Imagery 1-meter

Classification Methodology

eCognition Image Processing Software

Species/community-level polygons in blue over color infrared imagery base layer

RECLAMATION

Figure 22. Vegetation classification in raster format.

Classification Results

Figure 21. Saltcedar in 2007 which is no longer present in 2010 (green outlines), and saltcedar present in both 2007 and 2010 (red crosshatch).

Classification Results

Saltcedar

Saltcedar density -----Canopy acres------%Δ (% foliar cover) 2007 2010 Δ Subarea 1-10 9 2 7 0.55 -8.71 -94.0% Alto 11-20 -2.99 -79.9% Alto 3.75 0.75 21-40 2.74 0.99 -1.75 -63.8% Alto Alto 41-60 4.96 0.02 -4.94 -99.6% 61-80 -99 2% Alto 5.73 0.05 -5.69 Alto 81-100 57.87 0.10 -57.77 -99.8% Alto Subarea Total Acres 84.32 2.47 -81.85 -97.1% Alto Transition 1-10 9.59 5.95 -3.65 -38.0% Alto Transition 11-20 34.93 4.77 -30.16 -86.3% Alto Transition 21-40 16.64 9.81 -6.83 -41.1% Alto Transition 41-60 21.31 12.16 -9.15 -42.9% Alto Transition 61-80 24.45 15.68 -8.77 -35.9% 81-100 -68.6% Alto Transition 94.09 29.51 -64.58 -123.14 Alto Transition Subarea Total Acres 201.02 77.88 -61.3% Centro 1-10 95.84 91.64 -4.20 -4.4% 11-20 162.82 68.68 -94.14 -57.8% Centro 21 - 4063.55 84.32 20.78 32.7% Centro Centro 41-60 50.58 85.74 35.16 69.5% 61-80 75.53 100.70 25.17 33.3% Centro 81-100 284.60 203.07 -28.6% -81.53 Centro **Centro Subarea Total Acres** 732.92 634.14 -98.78 -13.5% 5.5% Baja 1-10 118.11 124.56 6.46 11-20 56.73 -7.75 -12.0% Baja 64.47 21-40 47.20 2.08 4.6% Baja 45.12 Baia 41-60 41.45 41.87 0.42 1.0% Baia 61-80 43.13 28.58 -14.55-33.7% Baja 81-100 70.77 59.75 -11.02 -15.6% **Baja Subarea Total Cost** 383.06 358.68 -24.37 -6.4% **MOJAVE BASIN TOTAL ACRES** -23.4% 1,401 1,073 -328

Other Vegetation

	Vegetation		-Canopy acres		
Subarea	Class	2007	2010	Δ	%∆
Alto	AR	15.11	0.11	-15.00	-99.3%
Alto	СО	15.93	28.13	12.20	76.6%
Alto	CW	499.62	563.05	63.43	12.7%
Alto	DS	450.35	1284.64	834.30	185.3%
Alto	MP	143.21	139.60	-3.61	-2.5%
Alto	MS	0.25	0.48	0.23	94.5%
Alto	RO	2.71	0.00	-2.71	-100.0%
Alto	LN	658.28	396.04	-262.24	-39.8%
	Alto Subarea Total Acres	1785.45	2412.05	626.60	35.1%
Alto Transition	AR	18.33	0.41	-17.92	-97.8%
Alto Transition	СО	0.38	0.80	0.42	112.4%
Alto Transition	CW	389.86	620.86	231.00	59.3%
Alto Transition	DS	1090.55	1541.58	451.03	41.4%
Alto Transition	MP	346.05	304.03	-42.02	-12.1%
Alto Transition	MS	0.18	0.86	0.69	387.4%
Alto Transition	RO	0.02	0.00	-0.02	-100.0%
Alto Transition	LN	881.81	1141.46	259.65	29.4%
Alto Tran	sition Subarea Total Acres	2727.17	3610.00	882.83	32.4%
Centro	AR	0.67	0.67	0.00	0.0%
Centro	СО	0.10	0.20	0.10	101.5%
Centro	CW	43.69	58.44	14.75	33.8%
Centro	DS	935.72	2204.06	1268.34	135.5%
Centro	MP	27.06	93.43	66.37	245.3%
Centro	MS	7.38	11.16	3.78	51.1%
Centro	LN	2001.84	1284.36	-717.48	-35.8%
с	entro Subarea Total Acres	3016.46	3652.32	635.86	21.1%
Baja	CW	16.32	16.23	-0.09	-0.5%
Baja	DS	769.03	2523.18	1754.15	228.1%
Baja	MP	0.59	2.38	1.79	304.6%
Baja	MS	183.23	94.66	-88.57	-48.3%
Baja	LN	678.90	1127.26	448.36	66.0%
	Baja Subarea Total Acres	1648.07	3763.71	2115.65	128.4%
MOJAVE BASI	N TOTAL ACRES	9,177	13,438	4,261	46.4%
TOT					

RECLAMATIO

Groundwater Methodology

LiDAR & Multispectral Orthophotos flown by Utah State Univ. in June, 2010

USGS Depth-to-GW subtracted from LiDAR to derive GW elevations within the Mojave River study area for 2008 & 2010

RECLAMATION

Water Salvage

Inflows Precipitation •Ground water Surface water **Outflows** Evaporation -Open water -Bare soil Transpiration Ground water Surface water

Water Salvage

The rate of movement of moisture from the soil to the water table and within groundwater-flow systems can vary from days to years to centuries.

Winter et al., 1998

Water Cost Methodology

- Theoretical costs based on water lost to ET
- 2011 acquisition costs of \$10,221 per acre-foot used for both 2007 and 2010 data
- Costs calculated for saltcedar by canopy closure class and other vegetation classes excluding desert scrub

Energy Balance Approaches Used:

The Two-source model SEBAL

Crop coefficient model used to extrapolate over the growing season

Two-Source Energy Balance Model (TSEB)

Interpreting thermal remote sensing data

$T_{RAD}(\boldsymbol{\theta}) \sim f_c(\boldsymbol{\theta}) T_c + [1 - f_c(\boldsymbol{\theta})] T_s$

(two-source approximation) Norman, Kustas et al. (1995)

Treats soil/plant-atmosphere coupling differences explicitly

- Accommodates off-nadir thermal sensor view angles
- Provides information on soil/plant fluxes and stress

System and Component Energy Balance

Two-Source Energy Balance Model (TSEB)

$$\lambda E_{C} = \alpha_{PT} f_{G} \frac{\Delta}{\Delta + \gamma} Rn_{C}$$

$$\alpha_{PT} \sim 1.3 (unstressed)$$

$$\alpha_{PT} \sim 0 (fully \ stressed)$$

$$\lambda E_{S} = Rn_{S} - G - H_{S}$$
(residual)

$$\int \mathcal{A}E = \mathcal{A}E_{c} + \mathcal{A}E_{s}$$

Two-Source Model

Normal et al (1995) Kustas et al (1999) Li et al (2005)

Advantages:

Well suited for modeling sparse canopies either in the agricultural or natural vegetation context where water could be limited

Has a more diverse ecosystem area of application

Provides actual evapotranspiration of the vegetation

Works better with higher spatial resolution thermal infrared imagery

Disadvantages:

Requires carefully calibrated and atmospherically corrected satellite or airborne imagery

More complex to program

SEBAL/METRIC Models

Bastiaansen et al (1995) Allen et al. (2007)

One-layer models

Uniquely solve for H using the dT method, a linear relationship between air temperature and surface temperature obtained through a linear transformation generated from surface temperatures observed over selected "hot" and "cold" pixel in the satellite image.

Advantages:

Do not require absolute calibration of the thermal imagery Well suited for irrigated areas under well watered conditions Provides actual evapotranspiration of the crops

Disadvantages:

Requires experienced operator to identify the "hot and cold" pixels May not work well in water limited, semi-arid natural vegetation

SEBAL ET Results for Block 1

Seasonal ET Estimation using ET fractions (crop coefficients) derived from remotely sensed ET

 $Kc = ET_a / ET_0$

ET_a = Actual ET from Energy Balance Model ET₀ = Reference ET from CIMMIS Weather Station

Phenology Dates	Code	Greenup Begins	Peak ET	Senescence Begins	Senescence Ends
Salt Cedar (Tamarisk)	SC	3/1	5/1	9/1	11/1
Mesquite	MS	4/1	5/15	8/1	9/15
Cottonwood	CW	4/1	5/15	9/15	11/1
Desert Scrub	DS	3/1	4/15	7/1	8/1
Decadent Vegetation	VD	4/1	5/15	8/1	9/15
Mesophytes	MP	4/1	5/15	7/1	8/1
Conifer	CO	3/1	5/15	10/1	11/15
Arundo	AR	4/1	6/1	10/1	11/1

Seasonal ET results for Tamarisk

Table 6. Seasonal saltcedar ET results (in millimeters of water) for theSEBAL model, Block 1 using modeled canopy height.

	SEBAL								
Total ET (mm)	2010	2009	2008	2007					
March-May	107	115	127	112					
May-Sep.	533	540	546	509					
SepNov.	230	232	232	226					
Total	870	888	905	847					
Reference ET (grass)	1589	1622	1667	1561					

 Table 7. Seasonal saltcedar ET results (in millimeters of water) for the Two

 Source model, Block 1 using modeled canopy height.

	TSM							
Total ET (mm)	2010	2009	2008	2007				
March-May	102	110	121	107				
May-Sep.	503	510	515	480				
SepNov.	216	218	218	212				
Total	820	837	854	799				
Reference ET (grass)	1589	1622	1667	1561				

Classified Lidar point clouds to obtain canopy height at 1-meter grid cells

Block 1 Seasonal ET results for Tamarisk using both energy balance models

Table 5. Comparison of seasonal saltcedar ET results (in millimeters of water) for the SEBAL and Two-Source models, Block 1, using modeled canopy height

	201	.0	2007	
	SEBAL	TSM	SEBAL	TSM
Total ET (mm)				
March to May	107	102	112	107
May to September	533	503	509	480
September to November	230	216	226	212
Total ET (mm)	870	820	847	799
Reference ET (grass)	1589	1589	1561	1561

Table 6. Comparison of seasonal saltcedar ET results for the SEBAL and Two-Source models, Block 1, using canopy height derived from lidar

	2010		200	7
	SEBAL	TSM	SEBAL	TSM
Total ET (mm)				
March to May	104	104	109	109
May to September	514	515	491	492
September to November	221	222	217	217
Total ET (mm)	838	840	816	818
Reference ET (grass)	1589	1589	1561	1561

The Two-source model was selected for all estimates due to processing speed and expediency

Results for other blocks on downstream side

Table 7. Seasonal saltcedar ET results for the Two-Source model, Block 2 using canopy height derived from lidar.

	2010	2007
Total ET (mm)		
March to May	96	101
May to September	465	445
September to November	198	194
Total ET (mm)	759	740
Reference ET (grass)	1589	1561

Table 8. Saltcedar crop coefficients by Block in the Baja basin used in the estimation of seasonal ET with Two-Source model

	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7
Kc							
Initial Kc (March 1)	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Mean K.c (May to Sept.)	0.53	0.48	0.40	0.48	0.48	0.31	0.28
Late K.c (November 1)	0.15	0.15	0.15	0.15	0.15	0.15	0.15

Table 9. ET fraction of different vegetation types for the 4 groundwater subareas.

	ALTO							
	SC	DS	CW	MS	VD	MP	CO	AR
Initial Greenup Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Peak Kc	0.49	0.34	0.71	0.36	0.33	0.56	0.36	0.4
Final Senescence Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
			A	LTO TR	ANSITIO	N		
	SC	DS	CW	MS	VD	MP	CO	AR
Initial Greenup Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Peak Kc	0.5	0.27	0.63	0.23	0.33	0.49	0.35	0.41
Final Senescence Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
				CEN	TRO			
	SC	DS	CW	MS	VD	MP	CO	AR
Initial Greenup Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Peak Kc	0.48	0.23	0.62	0.42	0.25	0.39	0.32	0.66
Final Senescence Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
				BA	JA			
	SC	DS	CW	MS	VD	MP	CO	AR
Initial Greenup Kc	0.15	0.15	0.15	0.15	0.15	0.15	0	0
Peak Kc	0.47	0.25	0.56	0.27	0.24	0.43	0	0
Final Senescence Kc	0.15	0.15	0.15	0.15	0.15	0.15	0	0

Table 10. Evapotranspiration and estimated seasonal water use by saltcedar in the Baja subarea during 2007 and 2010 seasons.

Year	2007	2010
Initial Greenup Kc	0.15	0.15
Peak Kc	0.46	0.46
Final Senescence Kc	0.15	0.15
Total Area (acres)	384	359
ET Greenup Period (mm)	97	92
ET Peak Period (mm)	425	445
ET Senescence Period (mm)	185	185
Total Seasonal ET (mm)	707	722
Volume (m3)	1,099,007	1,047,714
Volume (gallons)	290,326,999	276,776,633
acre-feet	892	844

Table 11.	Evapotranspiration and estimated seasonal water use	by
vegetation	n type in the Baja subarea for 2007 and 2010.	

	DS	CW	MS	LN	MP	CO	AR
Initial Greenup Kc	0.15	0.15	0.15	0.15	0.15	0	0
Peak K.c	0.25	0.56	0.27	0.24	0.43	0	0
Final Senescence K.c	0.15	0.15	0.15	0.15	0.15	0	0
2007	DS	CW	MS	LN	MP	CO	AR
Total Area (acres)	769	16	183	679	1	0	0
ET Greenup (mm)	49	85	51	53	70	0	0
ET Peak Period (mm)	129	537	167	155	155	0	0
ET Senescence (mm)	136	109	178	178	136	0	0
Total Seasonal ET (mm)	313	732	397	386	361	0	0
acre-feet	790	39	238	860	1	0	0
2010	DS	CW	MS	LN	MP	CO	AR
Total Area (acres)	2,523	16	95	1,127	2	0	0
ET Greenup (mm)	41	101	<mark>5</mark> 8	61	82	0	0
ET Peak Period (mm)	147	546	164	151	169	0	0
ET Senescence (mm)	114	108	193	193	114	0	0
Total Seasonal ET (mm)	302	754	415	405	364	0	0
acre-feet	2,500	40	129	1,499	3	0	0

DS=Desert scrub, CW=Cottonwood/willow, MS=Mesquite, LN=Low NDVI, MP=Mesophytes, CO=Conifers, AR=Arundo.

In 2007 and 2010 for the Daja Subarea.						
	LT_10	10_20	20_40	40_60	60 <u>8</u> 0	80_100
Initial Greenup Kc	0.15	0.15	0.15	0.15	0.15	0.15
Peak Kc	0.40	0.43	0.45	0.47	0.49	0.55
Final Senescence Kc	0.15	0.15	0.15	0.15	0.15	0.15
2007	LT_10	10_20	20_40	40_60	60 <u>8</u> 0	80_100
Total Area (acres)	118	64	45	41	43	71
ET Greenup (mm)	89	94	96	99	103	113
ET Peak Period (mm)	375	404	417	435	460	514
ET Senescence (mm)	161	175	181	190	202	228
Total Seasonal ET (mm)	625	672	694	724	765	855
acre-feet	242	142	103	98	108	199
2010	LT_10	10_20	20_40	40_60	60 <u>8</u> 0	80_100
Total Area (acres)	125	57	47	42	29	60
ET Greenup (mm)	84	89	91	94	98	108
ET Peak Period (mm)	393	423	437	455	482	538
ET Senescence (mm)	161	175	181	190	202	228
Total Seasonal ET (mm)	638	686	709	739	782	874
acre-feet	261	128	110	102	73	171

Table 12. Evapotranspiration of saltcedar by canopy density or closure class in 2007 and 2010 for the Baja subarea.

LT_10=Less than 10% canopy closure, 10_20=10-20% canopy closure, etc.

Final Observations

- Similar results were obtained for the 3 other groundwater management areas
- Significant water savings can be expected in the groundwater system even with replacement natural vegetation
- High resolution multispectral and thermal imagery along with Lidar terrain and vegetation data can be used to obtain reasonable estimates of water use of natural riparian vegetation

Results and Conclusions from Report

- ET reduced by ~800 AF/yr between 2007 and 2010
- Theoretical avoided cost of \$8.1 million
- Management of remaining 1000 canopy acres could lead to additional water savings
- High density stands should be prioritized for removal
- Decrease in ET from upstream to downstream
- Sparse saltcedar cover related to deeper water table
- Desert scrub ET estimates likely overestimated
- Controlling regrowth less expensive than controlling established stands

Recommendations

- Future groundwater analysis should examine response to Saltcedar control
- Map and monitor to determine permanent reduction of Saltcedar and potential re-vegetation of native species

THANK YOU! QUESTIONS?